Lockheed Martin unveils Orion-based Moon lander concept

An illustration of a lunar lander on the surface of the Moon. The design being proposed by Lockheed Martin is a two-stage vehicle derived from the Orion spacecraft. Image Credit: Lockheed Martin
Lockheed Martin unveiled a design for a human-rated lunar lander that could be built quickly to meet Vice President Mike Pence’s challenge to return humans to the Moon by 2024.
The two-stage lander concept was presented April 10, 2019, during the 35th Space Symposium in Colorado Springs, Colorado, where engineers from Lockheed Martin discussed ideas on how to accelerate lunar lander capabilities.
NASA’s current plan to return humans to the Moon is expected in two phases, as outlined by the agency’s administrator, Jim Bridenstine, earlier this week. The first phase is about speed and involves building an initial Lunar Gateway (described as a reusable command module in orbit around the Moon) likely with just a power and propulsion module and a utilization module with docking ports.
Ultimately, the Gateway is being designed to allow for Orion crews to dock and transfer to a reusable lunar lander architecture. It would also be in an orbit that requires little fuel to maintain while allowing for access to a large portion of the Moon’s surface. In the future, the vehicle is envisioned as being a rendezvous location for commercial resupply and refueling ships to replenish a reusable Moon exploration architecture.
NASA envisions a three-part lunar lander system, built via public-private partnerships consisting of a transfer vehicle to travel to low-lunar orbit, a descent vehicle to land on the Moon and an ascent vehicle to return back to the Gateway.

NASA has been working to restart its crewed lunar program for 15 years. Image Credit: James Vaughan / SpaceFlight Insider
However, Lockheed Martin’s lander concept only requires two of those: the descent and ascent vehicles. Moreover, they are expected to be, in part, based off NASA’s Orion crew module, of which Lockheed Martin is the prime contractor.
Orion is currently slated to launch atop NASA’s long-delayed Space Launch System as early as 2020. Known as Exploration Mission-1, it is expected to fly around the Moon before returning to Earth to test much of the spacecrafts systems.
EM-2 is expected to follow as soon as 2022 and will be a full-up human flight, likely utilizing a free-return trajectory around the Moon.
However, Lockheed Martin is proposing that it accelerate development on Orion’s docking hardware and software, including elements of design of the European service module, to allow for EM-2 to dock with the first modules of the Gateway, likely just the power and propulsion module and a utilization module with docking ports.
Those flights would test much of the hardware and software that would go into the proposed lunar lander, which the company would be developing in parallel, another key principle laid out by Bridenstine to allow for a speedy return to the Moon.
EM-3, would then be freed to send a crew in 2024 to the Gateway where its lunar lander could be waiting for them to take at least part of the crew to the surface.

An illustration of the ascent stage of Lockheed Martin’s lunar lander design docked to the Gateway. Image Credit: Lockheed Martin
Lockheed Martin said that for this plan to work on an aggressive five-year schedule, engineers would need to start “bending metal” next year. By late 2020, the focus would be on the avionics and software as a basis for systems testing and the beginning of crew training. Additionally, the company said resources from NASA—money—will be required for this to be built.
According to Lockheed Martin, a robotic tech demo would be planned for between 2021 and 2022 in order to further reduce risk.
Lockheed Martin has also been testing Gateway habitat prototypes at Kennedy Space Center since 2015 as part of NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program.
The company’s designs are based based on the Multi-purpose Logistics Modules, which were originally designed to provide logistics for the ISS. The prototype can be reconfigured for numerous missions.
Several companies are contracted under this program, including Boeing, Northrop Grumman, Bigelow Aerospace, etc, but Lockheed Martin was the first to turn the prototype to NASA for testing. Engineers are studying how Orion and future habitats could dock with Gateway.
Numerous systems are in the process of being designed and studied—including life support, radiation protection, thermal control, power, rendezvous, proximity, operations and docking, an airlock and communications—in order to determine which would work best in deep space.

Lockheed Martin is using its Habitat Ground Test Article to studying a variety of mission concepts. Photo Credit: Lockheed Martin
Heather Smith
Heather Smith's fascination for space exploration – started at the tender age of twelve while she was on a sixth-grade field trip in Kenner, Louisiana, walking through a mock-up of the International Space Station and seeing the “space potty” (her terminology has progressed considerably since that time) – she realized at this point that her future lay in the stars. Smith has come to realize that very few people have noticed how much spaceflight technology has improved their lives. She has since dedicated herself to correcting this problem. Inspired by such classic literature as Anne Frank’s Diary, she has honed her writing skills and has signed on as The Spaceflight Group’s coordinator for the organization’s social media efforts.
If federal funding was no obstacle then it “could be built quickly” since Lockheed Martin prefers cost-plus contracts. So I consider that 2024 date to mean no-chance-of-happening as opposed to no-earlier-than.
I’d like to see us return to the moon but I’m skeptical of it happening, seeing how our goals change with every new administration.
I prefer Lockheed Martin’s earlier single stage concept since it would be much cheaper to design a single vehicle than– two vehicles– for a two stage lunar lander.
But, I guess, Lock-Mart considers the Orion/Service Module derived ascent vehicle to simply be– the Orion/SM without heat shielding.
But Lock-Mart will still have to develop a short LOX/LH2 descent vehicle.
But it would be much simpler– and probably safer– to build a larger LOX/LH2 ascent/descent vehicle derived from the new Centaur V technology with the Orion derived habitat on top and no service module derived ascent stage.
The larger Lock-Mart lunar lander would necessitate propellant depots, however,to fuel the spacecraft. But refueling at NRHO shouldn’t be too difficult if tanks filled with propellant are deployed to NRHO by the Falcon Heavy, Delta IV heavy, and future Vulcan-Centaur and New Glenn rockets in 2024.
How is the gateway providing a ‘reusable landing system’ if the descent stage is left on the moon. Now after a landing, you have an ascent stage and no descent stage docked at the gateway… How is that of any use to a future mission?
Do we have to truck out and attach a new descent module every flight? That’s hardly ‘resuable’.
I was wondering that since this is a mostly unmanned orbiter, maybe the rest of the time could be used by scientists and serious lunar enthusiasts here on Earth, especially those studying meteorite impacts on the moon. RIPTILA was originally designed for a Lagrange orbit but live 24/7 cameras observing the moon would be spectacular and would invite the public as well since weather and locations affect lunar observation.
http://lunascan.com/riptila.htm
Francis Ridge
The Lunascan Project
It is hard to plan a return to the Moon given whimsical political leadership and public funding. Maybe this should be done privately?
Scaling from the astronauts, the landing stage engines look to be about the same size as a SpaceX Merlin from the Falcon 9. Why does a lunar lander require four such massive engines?
I wonder could SpaceX tender a modified Crew Dragon with an expendable trunk section containing extra fuel for the Super Dracos and landing legs?
I was thinking the same thing! Proposals are due by next week. I’m wondering if SpaceX has something up it’s sleeve? Would they spare any of their Starship engineers for this?
Those are just RL-10 engines with vacuum optimized exhaust nozzle with a thrust rating of about 105 kilo-Newton (24k lbf). Yes, they are about the same size externally when compared to a sea level Merlin engine.