Exoplanet-hunting TESS spacecraft ready for launch

NASA’s Transiting Exoplanet Survey Spacecraft (TESS) during a recent event at NASA’s Kennedy Space Center in Florida. Photo Credit: Michael Howard / SpaceFlight Insider
CAPE CANAVERAL, Fla. — NASA and SpaceX are set to launch the Transiting Exoplanet Survey Satellite (TESS) atop a Falcon 9 rocket. If everything goes according to plan, the observatory will conduct a two-year mission to survey more than 85 percent of the sky, searching for exoplanets around bright stars in the 300-light-year distance range.
TESS will be launched at 6:32 p.m. EDT (22:32 GMT) April 16, 2018, from Cape Canaveral Air Force Station’s Space Launch Complex 40. According to the 45th Space Wing, which manages the Eastern Range, there is currently an 80 percent chance of acceptable weather conditions during the 30-second launch window. The primary concerns for weather violation are high liftoff winds. Should the mission be postponed 24 hours, conditions are expected to improve to greater than 90 percent.

Artist’s depiction of NASA’s TESS spacecraft. Image Credit: NASA
The 772-pound (350-kilogram) spacecraft is not very big. It measures about 4.9 feet (1.5 meters) tall and is 3.9 feet (1.2 meters) wide. With its solar panels deployed, its wingspan comes to about 12.8 feet (3.9 meters). With its four wide-angle telescopes, it will orbit high above Earth in a 2:1 lunar resonance orbit, meaning it will orbit the planet twice for every time the Moon orbits once. According to NASA, this orbit should remain stable for decades.
Finding transiting exoplanets
Stars in the 300-light-year range are targeted for the survey, because brighter, closer stars lend themselves as better candidates for follow-up studies by ground-based observatories and, later, space-based telescopes such as Hubble or the James Webb Space Telescope (JWST) scheduled for launch in 2020. TESS will observe exoplanets by measuring the dip in a star’s light emission as a planet passes in front of, or transits, the star from Earth’s observational perspective.

The flight path from its initial insertion orbit to its final 2:1 lunar resonance orbit. Image Credit: NASA
TESS will conduct its survey with four cameras, each with a charge-coupled device (CCD) image sensor. The cameras aimed in such a way that they will observe a tiled vertical stack of the sky from the ecliptic to the celestial pole. The cameras will observe one such sector of the sky for 27 days before pivoting to the next of 13 observation sectors in each hemisphere, for a total of 26 sectors. The spacecraft will observe the southern hemisphere during its first year and the northern hemisphere during its second.

An example of one of TESS’s camera lenses. Photo Credit: Jim Siegel / SpaceFlight Insider
“Those of an amateur astronomer are on the order of 2 or 3 microns thickness typically,” Ricker told Spaceflight Insider. “The TESS CCDs are 100 microns thick and that’s how we are able to get out into the near infrared and actually see the peak of the emission that occurs from the cool stars that TESS is going to be optimized for. The other difference is that these CCDs have very low noise. We’re able to push the noise down a factor of 10 below what Kepler actually had with the electronics that were available at the time that they were developing their instrument. And also the pixels are quite large on the wafers that we used.”
Michael Cole
Michael Cole is a life-long space flight enthusiast and author of some 36 educational books on space flight and astronomy for Enslow Publishers. He lives in Findlay, Ohio, not far from Neil Armstrong’s birthplace of Wapakoneta. His interest in space, and his background in journalism and public relations suit him for his focus on research and development activities at NASA Glenn Research Center, and its Plum Brook Station testing facility, both in northeastern Ohio. Cole reached out to SpaceFlight Insider and asked to join SFI as the first member of the organization’s “Team Glenn.”
TESS is a worthless derivative mission cooked up by dumbasses at MIT. We should instead invest in designing, building, and testing interstellar spaceships, i.e. Elon Musk. TESS in a nosecone might have helped to aim an interstellar vehicle, but we already know the planets are out there, so we should just go, the sooner the better.