Spaceflight Insider

LunaH-Map CubeSat to map the Moon’s water deposits

Artist's rendering of the LunaH-Map spacecraft.

An artist’s rendering of the LunaH-Map spacecraft orbiting the Moon. Image Credit: NASA

Arizona State University (ASU) is developing a small satellite that will search for hydrogen in lunar craters with the ultimate goal of creating the most detailed map of the Moon’s water deposits. The spacecraft, named the Lunar Polar Hydrogen Mapper (LunaH-Map), is expected to shed new light on the depth and distribution of water ice on the Moon.

LunaH-Map is a 6-unit CubeSat with dimensions of 3.9 by 7.9 by 11.8 inches (10 by 20 by 30 centimeters) and a mass of about 30 pounds (14 kilograms). The shoebox-sized satellite is planned to be launched in September 2018 as a secondary payload on NASA’s Exploration Mission 1 (EM-1).

Artist's rendering of the LunaH-Map spacecraft.

An artist’s rendering of the LunaH-Map spacecraft. Image Credit: NASA

While the main mission will involve an uncrewed Orion spacecraft flying around the Moon, the CubeSat will be inserted into a highly elliptical orbit with a perilune, or low point, of about 3.1 to 6.2 miles (5 to 10 kilometers) centered around the South Pole of the Moon.

The spacecraft will spend about 60 days conducting research, completing 141 science orbits. Although LunaH-Map is smaller than typical NASA missions and is cheaper than previous probes sent to the Moon, expectations are very high for this university-built CubeSat.

“LunaH-Map has the potential to return high-resolution maps of neutron counts over the South Pole of the Moon, revealing any significant enrichments in water ice within permanently shadowed regions,” Craig Hardgrove, LunaH-Map Principal Investigator at ASU’s School of Earth and Space Exploration told “These maps could be used to better understand the sources and sinks for volatiles in our Solar System, as well as for determining future landing locations for rovers or even humans.”

In order to successfully map water deposits on the Moon, LunaH-Map will utilize its two identical neutron spectrometers consisting of an array of eight elpasolite (Cs2YLiCl6:Ce or CLYC) scintillators each. One array is about 0.8 inches (two centimeters) thick and has a volume of approximately 15.5 square inches (100 square centimeters).

The spectrometers will map the distribution of hydrogen at a spatial scale equal to approximately one-and-a-half times its orbital altitude. The instruments will map hydrogen within permanently shadowed craters to determine its spatial distribution, map hydrogen distributions with a maximum depth of one meter, as well as map its distribution in other permanently shadowed regions throughout the Moon’s south pole.

LunaH-Map should produce maps of near-surface hydrogen at unprecedented spatial scales of about 4.7 miles (7.5 kilometers) per pixel.

“Neutron spectrometers look for depletions in the amount of high-energy neutrons leaking from the lunar surface and use that as proxy for how much hydrogen, and therefore water ice, might be contained in the lunar regolith,” Hardgrove said. “The detector uses an array of scintillator crystals that produce a small flash of light when they are hit by a neutron. The energy associated with each flash of light is counted in the detector electronics and can be used to produce a map of neutron count rates over the lunar surface.”

lunah-map orbit ground track

This orbit ground track shows the 141 passes over the Moon’s south pole the spacecraft will conduct during its 60-day science mission. Image Credit: NASA

Given the fact that water ice is enriched at the poles of the Moon, particularly within regions that are in permanent shadow, LunaH-Map will fly over several of these regions multiple times from a very low altitude. It will acquire neutron counts that can be related to the abundance of hydrogen within the top meter of the lunar surface.

The low altitude will allow the spacecraft to improve upon the maps of permanently shadowed regions by “seeing” any regions within them that are substantially enriched in hydrogen.

The mission team is mulling the possibility of equipping the LunaH-Map spacecraft with a small color camera. However, such an instrument is not necessary for the probe’s primary science mission. As such, LunaH-Map’s star tracker could be used as a black-and-white camera.

Besides conducting scientific research, LunaH-Map will also demonstrate several new technologies that could be very useful in future CubeSat deep space missions.

The spacecraft has a highly efficient propulsion system that produces very low thrust that, over time, can change the craft’s velocity sufficiently, allowing it to achieve lunar orbit.

In addition to the ion propulsion system, LunaH-Map will test a new deep-space radio for CubeSats, new solar arrays that provide higher power, a new flight computer and attitude control system, and a new science instrument.

“The demonstrated success of any one of these technologies will be a fantastic achievement for deep space CubeSats,” Hardgrove said.

He also underlined the importance of this mission for ASU. Although LunaH-Map is not the first planetary science mission for which the university has provided instrumentation or science expertise, it is the first full planetary science mission to be led by ASU and the School of Earth and Space Exploration.

“The School of Earth and Space Exploration brings together scientists and engineers across multiple disciplines, and the selection of LunaH-Map, and more recently Psyche and Lucy, demonstrate that NASA is interested in supporting this model of ground-up, interdisciplinary, development of planetary science missions,” Hardgrove said. “The success of all these missions will not only enhance our knowledge of the Solar System, but hopefully provide inspiration to Arizona students and excellent opportunities to engage ASU students, faculty and staff in missions of exploration across multiple disciplines.”

LunaH-Map passed its preliminary design review in August 2016 and is scheduled for a critical design review in May 2017.

Video courtesy of ASU School of Earth and Space Exploration


Tomasz Nowakowski is the owner of Astro Watch, one of the premier astronomy and science-related blogs on the internet. Nowakowski reached out to SpaceFlight Insider in an effort to have the two space-related websites collaborate. Nowakowski's generous offer was gratefully received with the two organizations now working to better relay important developments as they pertain to space exploration.

⚠ Commenting Rules

Post Comment

Your email address will not be published. Required fields are marked *