Spaceflight Insider

NASA’s WFIRST spacecraft expected to advance understanding of dark matter

An artist's rendering of NASA's Wide Field Infrared Survey Telescope (WFIRST).

An artist’s rendering of NASA’s Wide-Field Infrared Survey Telescope (WFIRST). Image Credit: NASA/GSFC/Conceptual Image Lab

NASA’s Wide-Field Infrared Survey Telescope (WFIRST) could be destined for great discoveries in the field of astrophysics. With a view about 100 times bigger than that of the iconic Hubble Space Telescope, WFIRST is expected to yield crucial results about the still-elusive dark matter and dark energy.

Perplexing astronomers for years, dark matter and dark energy could soon reveal their true nature. WFIRST is currently being designed to address the most baffling questions about these mysterious substances which, together, account for about 95 percent of the mass-energy of the universe. The spacecraft could provide a major improvement in our understanding of this subject.

“WFIRST will survey large areas of the sky measuring the effects of dark matter on the distribution of galaxies in the universe. It will also observe distant Type Ia supernovae to use them as tracers of dark matter and dark energy. It will provide a huge step forward in our understanding of dark matter and dark energy,” Brooke Hsu of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, told

WFIRST is managed at Goddard with participation by the Jet Propulsion Laboratory (JPL) in Pasadena, California; the Space Telescope Science Institute in Baltimore; the Infrared Processing and Analysis Center, also in Pasadena; and a science team composed of members from U.S. research institutions across the country.

The spacecraft is currently in Phase A of preparations. The purpose of this stage is to develop the mission requirements and architecture necessary to meet the programmatic requirements and constraints on the project and to develop the plans for the preliminary design.

Preparations are on track for a mid-2020 launch. After liftoff, the telescope will travel to a gravitational balance point known as Earth-Sun L2, located about 1 million miles (1.6 million kilometers) from Earth in a direction directly opposite the Sun.

An artist's rendering of NASA's Wide Field Infrared Survey Telescope (WFIRST).

An artist’s rendering of NASA’s Wide-Field Infrared Survey Telescope (WFIRST). Image Credit: NASA/GSFC/Conceptual Image Lab

Operating at L2, WFIRST will study dark matter and dark energy with several techniques. The High Latitude Spectroscopic Survey will measure accurate distances and positions of a very large number of galaxies. It will measure the growth of large-scale structure of the universe, testing part of Einstein’s theory of General Relativity.

“It will perform large surveys of galaxies and galaxy clusters to see the effects of dark matter and energy on their shapes and distributions in the universe,” Hsu said, “All told, more than a billion galaxies will be observed by WFIRST.”

The spacecraft will conduct the Type Ia Supernovae (SNe) Survey which will use Type Ia SNe as “standard candles” to measure absolute distances. Calculating the distance to and redshift of the SNe provides another means of measuring the evolution of dark energy over time, providing a cross-check with the high latitude surveys.

“It will observe Type Ia supernovae to determine their distance and properties. More than 2,000 supernovae will be observed,” Hsu said.

WFIRST will also carry out the High Latitude Imaging Survey that will measure the shapes and distances of a very large number of galaxies and galaxy clusters. This survey is expected to determine both the evolution of dark energy over time as well as provide another independent measurement of the growth of large-scale structure of the universe.

However, WFIRST is not only about astrophysics: the infrared telescope will also have a chance to prove its usefulness as an exoplanet hunter. It will use microlensing techniques to expand our catalog of known extrasolar planets and will directly characterize these alien worlds using coronagraphy.

“The mission will stare at the a dense star region toward the direction of the center of our Milky Way galaxy to observe microlensing events,” Hsu said. “These brightenings caused when two stars exactly align and also provide a tally of the exoplanets around the stars. Over 2,000 exoplanets will be detected this way.”

To fulfill its scientific goals, WFIRST will be equipped with a 2.4-meter mirror hosting two instruments: the Wide-Field Instrument (WFI) and a high contrast coronagraph. WFI will provide the wide-field imaging and slitless spectroscopic capabilities required to perform the dark energy, exoplanet microlensing, and near-infrared (NIR) surveys. Whereas the coronagraph instrument is being designed for the exoplanet high contrast imaging and spectroscopic science.

“The Wide Field Instrument provides wide-field imaging and spectroscopy in support of the dark energy and microlensing surveys and integral field spectroscopy in support of the supernova survey,” Hsu said.

The coronagraph will be able to detect more than 50 exoplanets and observe their properties.

“It will be a huge leap forward compared to current instruments,” Hsu said, “Most exciting will be spectral observations of the light from the planets to see what the properties are of the atmospheres and possibly surfaces. Searches will be made for signatures of life on the planets.”

By operating WFIRST, NASA hopes to make major discoveries in the areas of dark matter and energy, exoplanets, and general astrophysics. The agency expects to learn the nature of dark matter and energy to determine what they are.

“We will survey the sky to find the most exotic and interesting galaxies, black holes, and stars,” Hsu said, “We will take a census of exoplanets that are beyond one astronomical unit from their stars, a region that Kepler is not able to survey. We will make the first sensitive direct observation of nearby exoplanets and find what their nature is and if there are signatures of life.”

Video courtesy of NASA Goddard


Tomasz Nowakowski is the owner of Astro Watch, one of the premier astronomy and science-related blogs on the internet. Nowakowski reached out to SpaceFlight Insider in an effort to have the two space-related websites collaborate. Nowakowski's generous offer was gratefully received with the two organizations now working to better relay important developments as they pertain to space exploration.

⚠ Commenting Rules

Post Comment

Your email address will not be published. Required fields are marked *